The Business & Technology Network
Helping Business Interpret and Use Technology
«  

May

  »
S M T W T F S
 
 
 
1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 
13
 
14
 
15
 
16
 
17
 
18
 
19
 
20
 
21
 
22
 
23
 
24
 
25
 
26
 
27
 
28
 
29
 
30
 
31
 
 

DP-Auditorium: A flexible library for auditing differential privacy

DATE POSTED:February 13, 2024
Posted by Mónica Ribero Díaz, Research Scientist, Google Research

Differential privacy (DP) is a property of randomized mechanisms that limit the influence of any individual user’s information while processing and analyzing data. DP offers a robust solution to address growing concerns about data protection, enabling technologies across industries and government applications (e.g., the US census) without compromising individual user identities. As its adoption increases, it’s important to identify the potential risks of developing mechanisms with faulty implementations. Researchers have recently found errors in the mathematical proofs of private mechanisms, and their implementations. For example, researchers compared six sparse vector technique (SVT) variations and found that only two of the six actually met the asserted privacy guarantee. Even when mathematical proofs are correct, the code implementing the mechanism is vulnerable to human error.

However, practical and efficient DP auditing is challenging primarily due to the inherent randomness of the mechanisms and the probabilistic nature of the tested guarantees. In addition, a range of guarantee types exist, (e.g., pure DP, approximate DP, Rényi DP, and concentrated DP), and this diversity contributes to the complexity of formulating the auditing problem. Further, debugging mathematical proofs and code bases is an intractable task given the volume of proposed mechanisms. While ad hoc testing techniques exist under specific assumptions of mechanisms, few efforts have been made to develop an extensible tool for testing DP mechanisms.

To that end, in “DP-Auditorium: A Large Scale Library for Auditing Differential Privacy”, we introduce an open source library for auditing DP guarantees with only black-box access to a mechanism (i.e., without any knowledge of the mechanism’s internal properties). DP-Auditorium is implemented in Python and provides a flexible interface that allows contributions to continuously improve its testing capabilities. We also introduce new testing algorithms that perform divergence optimization over function spaces for Rényi DP, pure DP, and approximate DP. We demonstrate that DP-Auditorium can efficiently identify DP guarantee violations, and suggest which tests are most suitable for detecting particular bugs under various privacy guarantees.


DP guarantees

The output of a DP mechanism is a sample drawn from a probability distribution (M (D)) that satisfies a mathematical property ensuring the privacy of user data. A DP guarantee is thus tightly related to properties between pairs of probability distributions. A mechanism is differentially private if the probability distributions determined by M on dataset D and a neighboring dataset D’, which differ by only one record, are indistinguishable under a given divergence metric.

For example, the classical approximate DP definition states that a mechanism is approximately DP with parameters (ε, δ) if the hockey-stick divergence of order , between M(D) and M(D’), is at most δ. Pure DP is a special instance of approximate DP where δ = 0. Finally, a mechanism is considered Rényi DP with parameters (